Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinspir Biomim ; 19(4)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38626775

RESUMO

Animals have evolved highly effective locomotion capabilities in terrestrial, aerial, and aquatic environments. Over life's history, mass extinctions have wiped out unique animal species with specialized adaptations, leaving paleontologists to reconstruct their locomotion through fossil analysis. Despite advancements, little is known about how extinct megafauna, such as the Ichthyosauria one of the most successful lineages of marine reptiles, utilized their varied morphologies for swimming. Traditional robotics struggle to mimic extinct locomotion effectively, but the emerging soft robotics field offers a promising alternative to overcome this challenge. This paper aims to bridge this gap by studyingMixosauruslocomotion with soft robotics, combining material modeling and biomechanics in physical experimental validation. Combining a soft body with soft pneumatic actuators, the soft robotic platform described in this study investigates the correlation between asymmetrical fins and buoyancy by recreating the pitch torque generated by extinct swimming animals. We performed a comparative analysis of thrust and torque generated byCarthorhyncus,Utatsusaurus,Mixosaurus,Guizhouichthyosaurus, andOphthalmosaurustail fins in a flow tank. Experimental results suggest that the pitch torque on the torso generated by hypocercal fin shapes such as found in model systems ofGuizhouichthyosaurus,MixosaurusandUtatsusaurusproduce distinct ventral body pitch effects able to mitigate the animal's non-neutral buoyancy. This body pitch control effect is particularly pronounced inGuizhouichthyosaurus, which results suggest would have been able to generate high ventral pitch torque on the torso to compensate for its positive buoyancy. By contrast, homocercal fin shapes may not have been conducive for such buoyancy compensation, leaving torso pitch control to pectoral fins, for example. Across the range of the actuation frequencies of the caudal fins tested, resulted in oscillatory modes arising, which in turn can affect the for-aft thrust generated.


Assuntos
Nadadeiras de Animais , Modelos Biológicos , Robótica , Natação , Animais , Natação/fisiologia , Nadadeiras de Animais/fisiologia , Nadadeiras de Animais/anatomia & histologia , Robótica/instrumentação , Fenômenos Biomecânicos , Répteis/fisiologia , Répteis/anatomia & histologia , Fósseis , Simulação por Computador , Biomimética/métodos
2.
Epidemics ; 43: 100680, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36963246

RESUMO

In January 2022, after the implementation of broad vaccination programs, the Omicron wave was propagating across Europe. There was an urgent need to understand how population immunity affects the dynamics of the COVID-19 pandemic when the loss of vaccine protection was concurrent with the emergence of a new variant of concern. In particular, assessing the risk of saturation of the healthcare systems was crucial to manage the pandemic and allow a transition towards the endemic course of SARS-CoV-2 by implementing more refined mitigation strategies that shield the most vulnerable groups and protect the healthcare systems. We investigated the epidemic dynamics by means of compartmental models that describe the age-stratified social-mixing and consider vaccination status, type, and waning of the efficacy. In response to the acute situation, our model aimed at (i) providing insight into the plausible scenarios that were likely to occur in Switzerland and Germany in the midst of the Omicron wave, (ii) informing public health authorities, and (iii) helping take informed decisions to minimize negative consequences of the pandemic. Despite the unprecedented numbers of new positive cases, our results suggested that, in all plausible scenarios, the wave was unlikely to create an overwhelming healthcare demand; due to the lower hospitalization rate and the effectiveness of the vaccines in preventing a severe course of the disease. This prediction came true and the healthcare systems in Switzerland and Germany were not pushed to the limit, despite the unprecedentedly large number of infections. By retrospective comparison of the model predictions with the official reported data of the epidemic dynamic, we demonstrate the ability of the model to capture the main features of the epidemic dynamic and the corresponding healthcare demand. In a broader context, our framework can be applied also to endemic scenarios, offering quantitative support for refined public health interventions in response to recurring waves of COVID-19 or other infectious diseases.


Assuntos
COVID-19 , Pandemias , Humanos , Suíça/epidemiologia , Estudos Retrospectivos , COVID-19/epidemiologia , SARS-CoV-2 , Alemanha/epidemiologia
3.
Sci Rep ; 12(1): 19538, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376420

RESUMO

In February 2021, in response to emergence of more transmissible SARS-CoV-2 virus variants, the Canton Grisons launched a unique RNA mass testing program targeting the labour force in local businesses. Employees were offered weekly tests free of charge and on a voluntary basis. If tested positive, they were required to self-isolate for ten days and their contacts were subjected to daily testing at work. Thereby, the quarantine of contact persons could be waved.Here, we evaluate the effects of the testing program on the tested cohorts. We examined 121,364 test results from 27,514 participants during February-March 2021. By distinguishing different cohorts of employees, we observe a noticeable decrease in the test positivity rate and a statistically significant reduction in the associated incidence rate over the considered period. The reduction in the latter ranges between 18 and 50%. The variability is partly explained by different exposures to exogenous infection sources (e.g., contacts with visiting tourists or cross-border commuters). Our analysis provides the first empirical evidence that applying repetitive mass testing to a real population over an extended period of time can prevent spread of COVID-19 pandemic. However, to overcome logistic, uptake, and adherence challenges it is important that the program is carefully designed and that disease incursion from the population outside of the program is considered and controlled.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Pandemias/prevenção & controle , Incidência , COVID-19/epidemiologia , COVID-19/prevenção & controle , Suíça/epidemiologia
4.
Indoor Air ; 32(8): e13094, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36040286

RESUMO

As virus-laden aerosols can accumulate and remain suspended for hours in insufficiently ventilated enclosed spaces, indoor environments can heavily contribute to the spreading of airborne infections. In the COVID-19 pandemics, the role possibly played by cable cars has attracted media attention following several outbreaks in ski resort. To assess the real risk of infection, we experimentally characterize the natural ventilation in cable cars and develop a general stochastic model of infection in an arbitrary indoor space that accounts for the epidemiological situation, the virological parameters, and the indoor characteristics (ventilation rate and occupant number density). As a results of the high air exchange rate (we measured up to 180 air changes per hour) and the relatively short duration of the journey, the infection probability in cable cars traveling with open windows is remarkably lower than in other enclosed spaces such as aircraft cabins, train cars, offices, classrooms, and dining rooms. Accounting for the typical duration of the stay, the probability of infection during a cable-car ride is lower by two to three orders of magnitude than in the other examples considered (the highest risk being estimated in case of a private gathering in a poorly ventilated room). For most practical purposes, the infection probability can be approximated by the inhaled viral dose, which provides an upper bound and allows a simple comparison between different indoor situations once the air exchange rate and the occupant number density are known. Our approach and findings are applicable to any indoor space in which the viral transmission is predominately airborne and the air is well mixed.


Assuntos
Poluição do Ar em Ambientes Fechados , COVID-19 , Automóveis , COVID-19/epidemiologia , Humanos , Aerossóis e Gotículas Respiratórios , Ventilação
5.
Front Robot AI ; 8: 791722, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35071335

RESUMO

Due to the difficulty of manipulating muscle activation in live, freely swimming fish, a thorough examination of the body kinematics, propulsive performance, and muscle activity patterns in fish during undulatory swimming motion has not been conducted. We propose to use soft robotic model animals as experimental platforms to address biomechanics questions and acquire understanding into subcarangiform fish swimming behavior. We extend previous research on a bio-inspired soft robotic fish equipped with two pneumatic actuators and soft strain sensors to investigate swimming performance in undulation frequencies between 0.3 and 0.7 Hz and flow rates ranging from 0 to 20 c m s in a recirculating flow tank. We demonstrate the potential of eutectic gallium-indium (eGaIn) sensors to measure the lateral deflection of a robotic fish in real time, a controller that is able to keep a constant undulatory amplitude in varying flow conditions, as well as using Particle Image Velocimetry (PIV) to characterizing swimming performance across a range of flow speeds and give a qualitative measurement of thrust force exerted by the physical platform without the need of externally attached force sensors. A detailed wake structure was then analyzed with Dynamic Mode Decomposition (DMD) to highlight different wave modes present in the robot's swimming motion and provide insights into the efficiency of the robotic swimmer. In the future, we anticipate 3D-PIV with DMD serving as a global framework for comparing the performance of diverse bio-inspired swimming robots against a variety of swimming animals.

6.
J Contam Hydrol ; 75(1-2): 31-54, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15385097

RESUMO

Hydraulically equivalent fractures may show striking differences when a gas-migration experiment is performed because of the different correlations between transmissivity, pore volume and entry pressure. We numerically simulate gas migration between injection and extraction boreholes in a parallel plate fracture with a heterogeneous fault gouge, in a rough-walled fracture filled with homogeneous material, and in a rough-walled empty fracture. The parallel plate model and the empty model clearly show the existence of preferential paths; for high variance of the transmissivity field, gas flow takes place only in few discrete channels separated by water-saturated regions. In contrast, in the fracture filled with homogeneous fault gouge, the gas saturation is continuous and more uniformly distributed. It appears a fundamental issue to be able to discriminate in situ among conceptual models that can yield such a different gas-saturation distribution. As in practice, the saturation distribution cannot be directly observed, tracer experiments are performed to characterize a fracture. For these reasons, we simulate the transport of tracers, which are added to the gas phase as soon as quasi-steady saturation distribution and extraction rate are achieved, and we compare the breakthrough curves obtained assuming different models. Our numerical simulations suggest that discrimination among the models on the basis of single-tracer tests is unlikely. A better tool to investigate fracture properties is provided by a gas-tracer test, in which a cocktail of gases with different water solubility is employed. These gases behave as partitioning tracers and allow us to estimate the gas saturation in the fracture. Indeed, by comparison of the residence-time distributions of different gases, we are able to compute a streamline effective saturation, which is an excellent estimate of fracture saturation. In addition, the streamline effective saturation curve contains information that is useful to identify the conceptual model that more likely applies to the fracture.


Assuntos
Monitoramento Ambiental , Gases/química , Água/química , Porosidade , Pressão , Poluentes do Solo , Solubilidade , Movimentos da Água , Poluentes da Água , Abastecimento de Água
7.
J Contam Hydrol ; 67(1-4): 195-217, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14607477

RESUMO

The relevant velocity that describes transport phenomena in a porous medium is the pore velocity. For this reason, one needs not only to describe the variability of transmissivity, which fully determines the Darcy velocity field for given source terms and boundary conditions, but also any variability of the pore volume. We demonstrate that hydraulically equivalent media with exactly the same transmissivity field can produce dramatic differences in the displacement of a solute if they have different pore volume distributions. In particular, we demonstrate that correlation between pore volume and transmissivity leads to a much smoother and more homogeneous solute distribution. This was observed in a laboratory experiment performed in artificial fractures made of two plexiglass plates into which a space-dependent aperture distribution was milled. Using visualization by a light transmission technique, we observe that the solute behaviour is much smoother and more regular after the fractures are filled with glass powder, which plays the role of a homogeneous fault gouge material. This is due to a perfect correlation between pore volume and transmissivity that causes pore velocity to be not directly dependent on the transmissivity, but only indirectly through the hydraulic gradient, which is a much smoother function due to the diffusive behaviour of the flow equation acting as a filter. This smoothing property of the pore volume-transmissivity correlation is also supported by numerical simulations of tracer tests in a dipole flow field. Three different conceptual models are used: an empty fracture, a rough-walled fracture filled with a homogeneous material and a parallel-plate fracture with a heterogeneous fault gouge. All three models are hydraulically equivalent, yet they have a different pore volume distribution. Even if piezometric heads and specific flow rates are exactly the same at any point of the domain, the transport process differs dramatically. These differences make it important to discriminate in situ among different conceptual models in order to simulate correctly the transport phenomena. For this reason, we study the solute breakthrough and recovery curves at the extraction wells. Our numerical case studies show that discrimination on the basis of such data might be impossible except under very favourable conditions, i.e. the integral scale of the transmissivity field has to be known and small compared to the dipole size. If the latter conditions are satisfied, discrimination between the rough-walled fracture filled with a homogeneous material and the other two models becomes possible, whereas the parallel-plate fracture with a heterogeneous fault gouge and the empty fracture still show identifiability problems. The latter may be solved by inspection of aperture and pressure testing.


Assuntos
Modelos Teóricos , Poluentes do Solo , Poluentes da Água , Fenômenos Geológicos , Geologia , Porosidade , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...